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Data Management, Archiving, and 
Sharing for Biologists and the Role 
of Research Institutions in the 
Technology-Oriented Age
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Data are one of the primary outputs of science. Although certain subdisciplines of biology have pioneered efforts to ensure their long-term 
preservation and facilitate collaborations, data continue to disappear, owing mostly to technological, regulatory, and ideological hurdles. In this 
article, we describe the important steps toward proper data management and archiving and provide a critical discussion on the importance 
of long-term data conservation. We then illustrate the rise in data archiving through the Joint Data Archiving Policy and the Dryad Digital 
Repository. In particular, we discuss data integration and how the limited availability of large-scale data sets can hinder new discoveries. Finally, 
we propose solutions to increase the rate of data preservation, for example by generating mechanisms insuring proper data management and 
archiving, by providing training in data management, and by transforming the traditional role of research institutions and libraries as data 
generators toward managers and archivers.
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Data are one of the primary outputs of science,   
 and extending their lifespan is crucial for several reasons: 

it helps to foster long-term interdisciplinary research, allows 
researchers to verify the accuracy of findings, leads to novel 
insights unforeseen at the time when the data were originally 
generated, and serves as a support instrument for justifying 
public funding. Two common examples in ecological and 
evolutionary research illustrate how data reuse may acceler-
ate the pace of science and technology: (1) publicly available 
sequences used to build phylogenies and that have become 
essential to the field of community ecology (Webb et al. 2002) 
and (2) climatic data combined with species distributions 
to predict range shifts and explore local to global ecological 
patterns (Araújo and Rahbek 2006, Kelling et  al. 2009, Jetz 
et al. 2012). Although a growing consensus is emerging about 
the inherent advantages of sharing data, notable barriers 
inhibiting the conservation of data remain. These vary from 
the motivation of individual researchers, appropriate training 
and technological resources for data management and archiv-
ing, and regulatory limitations, as well as ideological barriers 
affecting the willingness of individuals to share (Tenopir et al. 
2011, Whitlock 2011, Hampton et al. 2013, Mills et al. 2015, 
Whitlock et al. 2016, Wilkinson et al. 2016).

A large number of researchers have probably tried to 
reuse data without proper documentation and storage (e.g., 
data recorded in lab notebooks that were not digitized or 
were recorded on obsolete digital storage media) and real-
ized that in many instances, these data became effectively 
useless. As such, one major instrument to reduce the alarm-
ing rate of the disappearance of data is a proper understand-
ing of what constitutes data management and archiving 
(Campbell 2009, Vines et al. 2014, Roche et al. 2015, Voytek 
2016), as well as the appropriate vehicles toward these goals. 
Data management establishes, at the beginning of a research 
project, how data will be collected, documented, organized, 
and preserved (Strasser et al. 2012). Data archiving refers to 
the process of storing no longer actively used data such that 
they become easily discoverable and reliably retrievable for 
decades in the future (Whitlock 2011). Finally, data sharing 
is the process of making archived data openly available for 
reuse (figure 1).

Certain subdisciplines in biological sciences have built 
strong initiatives toward data archiving (e.g., NCBI GenBank, 
DataONE, Group on Earth Observations, the National 
Ecological Observatory Network and the Environmental 
Data Initiative). These initiatives serve as valuable examples 
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and resources to promote key concepts, such as data man-
agement and training, that we will introduce. In this article, 
we provide an articulated account for the need of proper 
data management and archiving, as well as a perspec-
tive regarding the main challenges and potential solutions 
regarding these endeavors. Moreover, based on our experi-
ence as members of a large collaborative biodiversity science 
research center (www.qcbs.ca), we believe that building 
institutional cultures that incentivize and support data man-
agement and archiving is essential to preserving data. We 
illustrate the rise in data archiving and mention the need to 
better recognize individuals who generate data. In addition, 
we present specific examples of how data set integration and 
reuse can lead to new discoveries. Finally, we describe the 
specific roles that research institutions and libraries can play 
in order to help researchers manage, archive, and share their 
data. Although we target mainly ecologists and evolutionary 

biologists working in academia, many of the issues discussed 
along with the potential solutions explored in this article are 
general enough to be applicable to other fields, particularly 
those that do not deal with sensitive human or medical data.

The importance of conserving data
Digital data have grown immensely in the last 20 years, 
doubling in size every 2 years and expected to grow to an 
astonishing 44 zettabytes (4.4 × 1022 bytes) by 2020 (Turner 
et  al. 2014, Voytek 2016); for the sake of comparison, 44 
zettabytes is equivalent to the storage capacity of 44 billion 
laptops. In addition, well over a million scientific articles 
are published every year (Larsen and Ins 2010), and this 
number is expected to double every 9 years (Bornmann and 
Mutz 2015).

Whether publicly funded data should be made public 
and how individuals that generate data should be recog-
nized when their data are used by others have generated 
intense debate and potential solutions (Parsons et  al. 2010, 
Mooney and Newton 2012, Piwowar and Vision 2013). In 
the United States, federal government and agencies have 
taken note of the problem, and in 2013, the Office of Science 
and Technology Policy issued a memo requiring US federal 
agencies to develop a plan to support increased public access 
to federally funded research results, including data manage-
ment plans (DMPs, Holdren et al. 2013). More recently, the 
US National Science Foundation (NSF) began to request that 
principal investigators list their research products rather than 
publications, reflecting the value that data sets, software, and 
other nontraditional research products contribute to the sci-
entific process. However, despite these initiatives, there is an 
immediate urgency to act on this critical issue because data 
continue to disappear.

This point is well illustrated by a recent study that deter-
mined that the odds of data being extant decreased by 17% 
every year after an article was published (Vines et al. 2014). 
After a certain time period, authors can no longer be easily 
contacted (e.g., because of broken emails or retirement), 
data stored on obsolete devices become difficult to retrieve, 
details (metadata) regarding the study are forgotten, or the 
data generators are simply reluctant to share. If not properly 
managed and archived, data will no longer be retrievable 
even by their own generators (Michener et al. 1997). Clearly, 
researchers themselves are not the best safekeepers of data 
for long-term usage and storage (Vines et al. 2013). In addi-
tion, Heidorn (2008) reported that most of the data gener-
ated in science (about 80%) are never used, reported, or 
published, an issue referred to as dark data. These data may 
lie dormant in old lab or field notebooks and may never be 
digitized in a machine-readable format. As such, the volume 
of data loss is vast and quite evident.

Negative views about data sharing are stalling progress toward 
data conservation. Opinions vary widely on what constitutes 
data sharing and how it should be implemented (Whitlock 
2011, Mills et  al. 2015, Longo and Drazen 2016, Whitlock 
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Figure 1. An example of the data life cycle (adapted from 
www.dataone.org/data-life-cycle; Strasser et al. 2012). The 
data life cycle provides a high-level overview of the stages 
involved in the successful management and preservation 
of data for sharing and reuse. It is recognized that some 
research activities might use only part of the life cycle (e.g., 
a project focused on primary data collection and analysis 
might bypass the discover and integrate steps) or might 
not follow the linear path depicted here. In this life cycle, 
data management is the precursor to data preservation 
(archiving) and should occur once data has been described 
(raw data with appropriate metadata) and analyzed 
(summary table). Once this is done, data can be made 
publicly accessible (shared) or reused.
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et al. 2016). At one end of the sharing spectrum, data may 
come with no restrictions on reusability, status of the data 
requester, or research question. At the other end, access 
to data may be restricted on the basis of what data gen-
erators believe is an appropriate reuse of the data and fair 
recognition to the data generator. In a recent survey among 
researchers who collect long-term ecological data, Mills and 
colleagues (2015) found that only 8% of individuals were 
in favor of uncontrolled data sharing but that the majority 
were in favor if the principal investigator was involved in the 
research reusing the data. Many data generating research-
ers are reluctant to share because of individual costs (Mills 
et al. 2015, Evans 2016; see table 1 for a summary of benefits 
and concerns regarding data management, archiving, and 
sharing). The perception that sharing comes at a high cost 
to researchers has an insidious consequence: It leads many 
researchers to adopt a conservative approach regarding data 
archiving and sharing, perhaps until the debate within the 
scientific community is settled. As such, it is our view that a 
focus on this discussion is stalling progress in establishing a 
culture of proper management and archiving of data.

Individual scientists, governments, journals (via their 
editorial boards), and institutions are the ones capable of 
promoting and enforcing data management practices and 
archiving. However, it is quite clear that the issue of data 
sharing is rather controversial at the moment. As such, in 
our views, policies on sharing should occur concurrently 
or perhaps even be treated as a separate issue. In essence, 
the concept of conserving now and sharing later should be 
used to convince individual researchers (and institutions) to 
properly conserve data now. Sharing for future reuse could 
then be deferred (often referred to as data embargo) for 
when particular data are no longer perceived as strategic by 
the individuals, groups, or institutions that generated them.

The reproducibility crisis. An apparent rise in the number of 
scientific retractions (Steen et  al. 2013) and the frighten-
ing idea that most published findings may simply be wrong 
(Ioannidis 2005) have led many researchers to believe 
that science is experiencing a reproducibility crisis (Baker 
2016). In many ways, this is the result of scientists failing, 
consciously or not, to report which parts of the data were 
used to generate results and which analyses were conducted 
on the data (selective reporting), thereby biasing interpre-
tation and conclusions (Baker 2016, Parker et  al. 2016). 
Unfortunately, in many cases, we currently do not have the 
proper means to test, interpret, and reproduce analyses and 
results reported in published papers (Nekrutenko and Taylor 
2012, Open Science Collaboration 2015, Parker et al. 2016). 
The issue is pressing and needs to be taken seriously if only 
to ensure that the public continues to trust scientific research 
(including supporting publicly funded research) and that 
governmental agencies continue to make science-based 
decisions to implement policies.

One potential solution to alleviate the reproducibil-
ity crisis would be to make data available at the time of 

submission for reviewers to assess. Although some bio-
logical journals have started to request authors to make data 
available to reviewers, this is usually done when reviewers 
specifically ask for the data. Assessment of data manage-
ment and archiving standards during the review process 
can provide a way to correct errors and make authors check 
their data and analyses thoroughly before submitting them 
along with the manuscript. In addition, many journals in 
ecological and evolutionary research (e.g., The American 
Naturalist, Molecular Ecology, Ecological Monographs, and 
the British Ecology Society journals) now request that the 
data necessary to reproduce the results be archived once the 
publication is accepted (Whitlock 2011; see also the “Data 
archiving” section below). Although these represent a virtu-
ous effort to assure data archiving, it is far from solving the 
issue because the data requested are usually the minimum 
necessary to reproduce the analyses presented in a paper 
(Whitlock et al. 2016). Moreover, other solutions will need 
to be implemented at the same time to address the reproduc-
ibility crisis, such as committing to analytical plans prior to 
collecting data (e.g., https://cos.io/prereg).

Defining data
The Open Archival Infor mation System reference model 
(ISO 2012) defines data as “a reinterpretable representation 
of information in a formalized manner suitable for com-
munication, interpretation, or processing” and provides 
examples of data that include “a sequence of bits, a table of 
numbers, the characters on a page, the recording of sounds 
made by a person speaking, or a moon rock specimen.” 
Therefore, data can extend beyond digital format, but the 
preservation of physical artefacts is beyond the scope of 
the current article. The Office of Science and Technology 
Policy (OSTP) memo released by the Executive Office of the 
President in Washington, DC (Holdren et al. 2013), provides 
guidance on what is not considered data, at least for the 
purposes of data sharing mandates. These include labora-
tory notebooks, preliminary analyses, drafts of scientific 
papers, plans for future research, peer-review reports, and 
communications with colleagues, as well as physical objects, 
given that the memo was focused on digital scientific data. 
Although not intended for sharing, these objects can also 
be subject to management practices (figure 1; Michener 
2015) so that they become appropriately archived for future 
reference. Consequently, metadata describing each object 
represent a critical piece of information to ensure that the 
provenance of data is not lost, in addition to ensuring data 
interoperability (see the “Giving data a second life through 
data set integration” section below; Wilkinson et  al. 2016, 
Daraio et al. 2016).

The Data Observation Network for Earth (DataONE 
2016, Michener et al. 2011), a global distributed framework 
of data repositories supporting earth and environmental 
sciences, can serve as a practical guide to what is being 
considered as data, at least for the sake of management and 
archiving. Of the 400,000 publicly available data objects, 
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Table 1. A summary of the benefits, concerns, and putative solutions regarding data management, archiving, and sharing.
Benefits
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Common understanding of the roles and responsibilities of the researchers involved in the project. X

Reducing the time associated with data handling and a better version controlling of data. X x x

Prevention of the duplication of effort. X x x

Insurance to protect against loss. x X X

Forcing authors to check their data and analyses, thereby preventing errors being committed. x X X

Less time and effort to retrieve data. x X x

Better enforcement of standards regarding quality and formats. x X X

Compliance with funder or publisher requirements. x x X

Helping solve the reproducibility crisis. x x X

Large-scale integration of different sources of information and interoperability with existing databases. x x X

Increasing public confidence in science as being open, objective, and transparent. x X

Investing money more efficiently through data reanalysis rather than spending money collecting new data. x X

Training tools and data sets for students. X

Leveraging of open databases to make new scientific discoveries. X

Allowing developing countries access to First-World data sets, thereby allowing them to leapfrog technological hurdles. X

Allowing other researchers to work on a problem (i.e., a single individual does not have the time or the creativity to foresee all of 
the possible ways the data could be analyzed). X

Increasing visibility for the data generator. x X

Concerns Putative Solutions

No universal definition of what constitute data. If the quality and openness of a data set become part of the peer-
review process, authors will get feedback and adapt, and each 
scientific field can come up with their own sets of requirements.

x X X

Lack of proper reward mechanisms. This should be solved by changing the rules and the culture of evaluations 
for grants, positions, and promotions. See also “Benefits” above. X X X

It takes time, effort, and money that researchers simply 
do not have.

It takes less time and effort to manage data as they are being 
generated than at a later date. Many journals waive data archiving fees. X X X

Sensitive data (e.g., data involving rare species or 
medical information).

Sensitive information can be anonymized prior to release. Obtain 
informed consent from the participants. X X

Formats may change, thereby rendering data sets useless. Use nonproprietary formats. X X

Data can be hacked. Implement proper security measures, but arguably, this is a real threat 
with no foolproof solution. X X

Journals and data deposit may disappear along with 
their data sets.

Archive data on servers that are not tied to a specific journal. Long-term 
funding of data archives. X X

Researchers have to review data sets, and reviewers 
may already be overburdened.

Give reviewers proper recognition (see www.publons.org as an example 
of how to start better recognizing reviewers). X X

Without proper knowledge of how the data were 
collected, the data may be used improperly.

Use a better description of the methods and proper metadata 
accompanying the data. X

You may end up being scooped with your own data. You can embargo the data (Mills et al. 2015, Whitlock et al. 2016). 
Also, this rarely happens, except in very specific disciplines (Mills et al. 
2015, Evans 2016, Hendry 2015).

X

You may end up being proven wrong with your own data. No solution. Human error does happen and needs to be recognized and corrected. X

If the new generation of scientists only explores existing 
data, there will not be interest in training people in 
acquiring novel data.

Incentivize data collection (i.e., give proper credit to data generators) in 
order for people to continue collecting data. X

You worked hard for your data, so you should not share 
it for free (the research parasite argument; Longo and 
Drazen 2016).

No solution, but arguably, data collected with the help of public money 
should be public, and the nature of research is to build on what has 
been done before you. 

X

Note: A large X represents a central issue; a small x implies that this is a lesser issue. Data management establishes, at the beginning of a 
research project, how data will be collected, documented, organized, and preserved. It ends once the project is terminated, at which point the 
data either become obsolete and are deleted or else are archived for posterity. Data archiving refers to the process of storing no longer actively 
used data such that they become easily and reliably retrievable for decades in the future. Data sharing is the process of making data openly 
available to reuse, without restrictions from copyright, patents, or other mechanisms of control.
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30% are .csv files, 15% are plain text, 12% are .xml files, 8% 
are .pdf files, 5% are image files, and 30% are other unknown 
file types (DataONE 2016). The Dryad Digital Repository 
(Dryad 2016) archives numerous data sets in ecological and 
evolutionary research and contains a similar broad scope of 
data sets.

Ultimately, what are considered data and the resources 
needed to manage and archive them greatly depends on the 
discipline (see review by Kratz and Strasser 2014 specifically 
on this issue). As we mentioned in the previous section, if 
the quality and level of access of a data set become part of the 
peer-review process, authors would also receive comments 
from reviewers about their data, and ideally, each field would 
evolve toward generating their own set of requirements.

The first step: Planning for data management
Data management should be viewed as a mandatory condi-
tion in order for data to be findable, accessible, interoper-
able, and reusable (FAIR Guiding Principles; Wilkinson 
et al. 2016), and good data management should take place 
throughout all stages of the data life cycle (figure 1; Strasser 
et  al. 2012), from planning through collection, assurance, 
description, preservation, discovery, integration, and analy-
sis (e.g., Michener 2015). For example, the Long Term 
Ecosystem Research Network (LTER 2017) has pioneered 
the efficient allocation of limited resources for data manage-
ment. Notably, its wealth of ecological data across multiples 
sites in the United States, its long history of data manage-
ment as an integral core value, and its use of actively main-
tained and developed metadata standards have made the 
LTER a successful example of data management supporting 
scientific research and collaboration. However, challenges 
such as cross-site and cross-network integration due to 
the diversity of data types, increased workload due to the 
implementation of standardized approaches, uneven access 
to data specialists, and tension between site- and network-
specific needs remain.

The first stage of the data life cycle—and one that might 
be considered an ongoing activity—is planning (figure 
1). For example, most US funding agencies now require a 
data management plan (DMP) as part of the grant submis-
sion process to ensure appropriate measures toward the 
long-term preservation and accessibility of data products 
arising from federally funded research (see https://dmptool.
org/guidance for a list of US funders requiring DMPs). A 
DMP details how to care for the data, including who will 
be responsible for management and how the data will 
be documented and archived, especially once the project 
is completed. Most research sponsors will have specific 
requirements regarding what should be included in a DMP. 
For example, the DMPTool (United States; https://dmptool.
org), DMPonline (United Kingdom, https://dmponline.dcc.
ac.uk), and DMPAssistant (Canada, https://assistant.portage-
network.ca/en) provide step-by-step tools that enable users 
to create funder-compliant DMPs. Although variation exists, 
these templates share a number of primary components and 

typically include (a) the types of data to be authored, (b) 
standards that should be applied, (c) roles and responsibili-
ties of individuals involved in the project, (d) access policies, 
(e) provisions for archiving and preservation, and (f) plans 
for eventual transition or termination of the data collection 
involved in a particular study.

Benefits. Regardless of whether these data are ultimately 
shared publicly, the benefit of creating a data management 
plan prior to undertaking a research program cannot be 
overstated (see table 1 on the benefits and concerns regard-
ing data management, archiving, and sharing). Planning for 
data management can increase efficiency in several ways: by 
preventing data duplication, reducing the risk of data loss, 
and reducing the time associated with data handling and 
error checking (Michener 2015). It also allows researchers 
to more readily share data with future collaborators (fig-
ure 1) and meet journal and other agency requirements. 
In addition, working on a shared DMP creates a common 
understanding of the roles and responsibilities of individu-
als involved in the project: Who will be responsible for and 
review the DMPs? How will adherence to an established 
DMP be checked? What process is in place for transferring 
the responsibility for the data? Who will hold responsibil-
ity for the data once the original personnel are no longer 
involved? Who will hold intellectual property rights, and 
how will this affect data access? Will the physical location of 
the data affect its accessibility? Planning in advance will sup-
port preservation and access to data in the event of students 
graduating, collaborators changing institutions or retiring, 
or the research project simply coming to an end.

Training. Roche and colleagues (2015) suggested that most 
researchers in ecology and evolution now probably under-
stand their obligation to archive and share data but struggle 
to do it effectively. Unfortunately, managing and manipulat-
ing large volume of heterogeneous information often require 
specific computational skills that ecologists often do not 
possess (Poisot et  al. 2015). Discipline-specific initiatives 
that have pioneered collaborative and sharing efforts can 
serve as potential solutions. For example, DataONE (2016) 
currently offers training modules on data management 
that can be incorporated into the current teaching cur-
riculum (www.dataone.org/education-modules). Similarly, 
the National Ecological Observatory Network (NEON) 
provides data tutorials, workshops, and data management 
modules (www.neonscience.org/resources/teaching-modules), 
much like the EDI (https://environmentaldatainitiative.org) 
and the CUAHSI (www.cuahsi.org). Finally, the success of 
the Data Carpentry initiative (Teal et al. 2015) also provides 
strong evidence of the current needs of the community. 
Generating and reporting appropriate metadata and orga-
nizing them in a reusable way across platforms and with 
appropriate safety controls are all examples of technicalities 
that the actual curriculum of most biology programs does 
not cover (see also “The roles of research institutions and 
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their libraries” section). Training is a central component of 
data management, and research agencies have identified it 
as a key behavior that a researcher “Learns, stays up to date 
on and incorporates the basic components of a data, records, 
and knowledge management process” (NIH 2017).

Data archiving
The number of archiving repositories in science has grown 
steadily from less than 100 in 2005 to more than 2000 in 
2012 (Pinfield et  al. 2014). These repositories comprise a 
small number of large repositories and a large number of 
small repositories. They are predominantly institutional, 
multidisciplinary, open access, and English language based 
(Pinfield et  al. 2014). The online tool at www.re3data.org 
helps users identify which storage repository they should 
target and has identified over 1500 research data reposi-
tories, covering a wide range of disciplines and making it 
the most comprehensive registry available today (Re3Data 
2016). With respect to ecological and evolutionary research, 
repositories have been emerging as de facto standards for 
specific disciplines (e.g., Dryad, GBIF, and NCBI), with 
DataONE encompassing many discipline-specific initia-
tives such as the EDI, NEON, or the Europe Long-Term 
Ecosystem Research Network. In addition, journals now 
permit researchers to get credited for data generation. 
Several journals dedicated to data publication exist, and 
Candela and colleagues (2015) described more than 100 cur-
rently existing data journals and journals that publish data 
papers. Finally, funding invested on open data archiving is 
arguably very cost effective (Piwowar et al. 2011, Vines et al. 
2013). However, maintaining repositories once data have 
been generated requires continuing support and commit-
ment, and different sources may need to contribute to the 

financial costs (funding agencies, journal publishers, librar-
ies, or even individual researchers).

The Joint Data Archiving Policy and the role of the Dryad Digital 
Repository. The Joint Data Archiving Policy (JDAP; see the 
full description of the policy at https://datadryad.org/pages/
jdap; Whitlock et  al. 2010) describes a requirement that 
data-supporting scientific publications be openly available 
and has been adopted by a growing number of journals since 
2010. Dryad (2016), a curated resource for data underlying 
scientific publications, has become the primary repository 
in ecology and evolution research to comply with the JDAP. 
Dryad makes data discoverable, freely reusable, and citable. 
It has been steadily growing from about 100 papers with 
accompanying data sets in 2010, when a number of jour-
nals in ecology and evolution started enforcing the JDAP, 
to over 4000 in 2016 (figure 2; see Renaut et  al. 2018 for 
data files at https://datadryad.org, Renaut 2018 for scripts at 
https://zenodo.org, and SupMat for details). For the 10 big-
gest journals contributing to Dryad (figure 3), the number 
of papers with an accompanying Dryad data set has risen 
steadily (up to approximately 80% in 2015 for Molecular 
Ecology; figure 4). Note that these are likely underestimates 
of the true rate of data archiving (see SupMat). Noticeably, 
PLOS ONE has since 2015 become the biggest Dryad con-
tributor (600 data sets in 2015; see figure 3), but this large 
absolute amount of data package is mainly due to the sheer 
amount of papers published in PLOS ONE (over 22,000 
papers published in 2016). Finally, although JDAP might 
technically require authors to make data available, without 
strong enforcement (e.g., through reviewers, editors, and 
editorial staff making sure that authors comply with the 
policy), authors often do not comply with the journal policy 
(Roche et al. 2014, Van Noorden 2014). Indeed, Vines and 
colleagues (2013) showed that requesting authors to add 
an explicit data availability statement at the end of their 
publication was a very efficient way to ensure that authors 
complied with the journal policy. Finally, badges acknowl-
edging open practices are also effective in order to improve 
the preservation of data (Kidwell et al. 2016).

Recognizing data generators via data citation. Although the over-
all rate of data reuse in ecology and evolution appears low 
(Evans 2016), several examples of novel analyses enabled 
by this practice are well documented (see “Giving data a 
second life through data set integration” section). In addi-
tion, the rate of data reuse is highly underestimated, in large 
part because scientists often fail to properly cite their data 
sources and the current science publication system itself 
may not be appropriate for data citation. Unfortunately, this 
is a problem akin to the one faced by software developers, in 
which most software is improperly recognized and increased 
citation rates would lead to increased development and shar-
ing (Niemeyer et al. 2016). For example, data sets on Dryad 
are frequently downloaded, but this only provides circum-
stantial evidence that they are being reused (Hendry 2015). 
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Until publications start explicitly citing data, demonstrating 
this link will remain difficult.

Data citation will demand effort from at least four fronts. 
First, data authors must ensure that their archived data are 
given a unique identifier (such as a digital object identifier, 
or DOI) and are placed in a publicly accessible and discov-
erable repository. Second, researchers must consider and be 
willing to cite data packages and publications as two separ-
ate entities. In fact, the idea that data should be published 
and cited has been advocated for some time (Parsons et al. 
2010, Mooney and Newton 2012, Costello et al. 2013), but 
data citation remains rare in the scientific literature. Third, 
journals must recognize data packages as a regular scientific 
publication or product with a DOI. Arguably, citing original 
data sets, especially from aggregated data, remains problem-
atic. For instance, anyone running a large-scale integrative 
analysis of biodiversity distribution using GBIF (2016), 
DataONE (2016), or other large-scale data aggregators faces 
the problem of reference tractability for these data sets con-
taining thousands of individuals citations. Another issue is 
proofreading references, which becomes cost prohibitive 

for thousands of citations. Nevertheless, 
some journals, such as the Nature 
Publishing Group’s Scientific Data, have 
actually started adding a specific data-cit-
ation section (Editorial 2013). Finally, 
scholarly search engines have also started 
tracking and indexing data packages, 
thereby providing data generators with 
ways of tracking the value (citations) 
of their work. For example, DataMed 
(https://datamed.org), an NIH initiative, 
now tracks data packages, in addition 
to Web of Science’s Data Citation Index 
(www.wokinfo.com/products_tools/multi-
disciplinary/dci/, Thomson Reuters™) 
and Elsevier’s DataSearch (https://dat-
asearch.elsevier.com/#), but noticeably 
not Google Scholar.

Data sharing and reuse lead to new 
discoveries
Numerous opinions and perspectives 
have been written specifically on the idea 
of open science and public data sharing 
(Tenopir et  al. 2011, Goodman et  al. 
2014, Kratz and Strasser 2014, Roche 
et  al. 2014, Mills et  al. 2015). In table 
1, we summarize many of the benefits 
and concerns discussed in the litera-
ture. Ultimately, making data available, 
especially through the use of existing 
community platforms (such as the ones 
mentioned in the “Planning for data 
management” section and in the para-
graph below) allows reaching a wider 

audience, leveraging existing cyberinfrastructure, getting 
recognition and credit, and enhancing collaborations. Below, 
we discuss how data reuse can lead to novel discoveries.

Giving data a second life through data set integration. Horizontal 
data storage (i.e., the aggregation of data sets, keeping their 
original format) is the first and easiest way to integrate data 
sets (Jones et al. 2006). However, it will not necessarily be the 
most useful for advancing research. Alternatively, vertical 
data storage (i.e., the integration of data sets by constrain-
ing information to specific standards) has the potential to 
open new frontiers of research given how it provides novel 
information that may not be accessible to a single researcher 
within a lifetime. The Global Biodiversity Information 
Facility (GBIF 2016) and NCBI GenBank (Benson et  al. 
1993) well exemplify the potential that imposing stan-
dards can have on generating new results and making data 
more easily discoverable. Multidimensional storage and 
the interoperability of databases offer the most potential 
but require that databases communicate among them and 
allow different layers of information to be retrieved for a 
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single data point (Daraio et  al. 2016). Although interoper-
ability remains challenging and limits data utility, discipline-
specific initiatives exist (e.g., the Global Earth Observation 
System of Systems, www.earthobservations.org/geoss.php; 
Earthcube, www.earthcube.org/info/about; and the National 
Ecological Observatory Network, www.neonscience.org).

Some of the greatest scientific challenges and interests in 
ecological research are at large spatial scales, integrating a 
wide range of organisms, systems, or functions into what 
has been described as macrosystem ecology (Soranno and 
Schimel 2014). For example, the vertical integration of data 
sets has recently improved estimates of biodiversity for vari-
ous groups of organisms, such as trees (Slik et al. 2015), birds 
(Jetz and Fine 2012), arthropods (Basset et  al. 2012), and 
fishes (Stuart-Smith et al. 2015). This permits a better assess-
ment of the distribution of biodiversity at the global scale as 
well as improved estimates of extinction rates (Ceballos et al. 
2015), including for the rarest and least-documented groups 
(Régnier et  al. 2015). With a comprehensive integration of 
data sets, we could even envision linking the distribution of 
biodiversity to information on traits and phylogeny for bet-
ter assessments of functional and evolutionary distribution 
mismatch (Devictor et al. 2010) and of extinctions following 
climate warming (Thuiller et  al. 2011). The structure of 
ecological networks could also be reconstructed across large 
regions with the combination of trait, species distribution, 

and biotic interaction data (Albouy et al. 
2014).

Although imposing standards helps 
to make data manageable, discov-
erable, and reusable, data integration 
will always remain challenging, simply 
because, paradoxically, science tends to 
advance by pushing the boundary of 
current knowledge standards. As such, 
the solution likely lies in developing 
protocols that allow data integration and 
interoperability rather than settling for a 
limited number of formats.

The limited availability of suitable large-scale 
data sets.  Analyses of large-scale systems 
are inherently limited by the availability 
of suitable data sets: Most data collection 
results in small-scale, local data, and it is 
not always clear how these can be used 
to generate knowledge at larger scales. 
Collecting exhaustive data sets at large 
scales can be a daunting effort. However, 
we envision that ecologists could, in 
parallel, build on existing databases and 
aggregate them in a way that allows test-
ing concepts stemming from theory. For 
example, Poisot and colleagues (2015) 
illustrated this approach by integrating 
existing freshwater ecosystem food-web 

and occurrence data into a synthetic data set, thereby allow-
ing researchers to forecast the structure of stream food webs 
at the global scale.

Many fields in the biological sciences, genomics being 
one of the most prominent, rely heavily on data sharing and 
archiving (e.g., GenBank; Benson et  al. 1993). In contrast, 
some scientific communities have adopted more restrictive 
practices. For example, the TRY (2016) database, a global 
archive of curated plant traits, is closed source, and access 
requires approval of the study by data contributors. As such, 
it hinders novel analyses and renders the large-scale integra-
tion of these data challenging. Even more extreme are data 
that are not publicly advertised, and in this situation, access 
to data depends on how connected one is, which is arguably 
entirely independent of the scientific merit of particular 
research programs.

The roles of research institutions and their libraries
Although many journals in ecology and evolution as well 
as funding agencies now mandate that data be archived and 
made public after a certain period or embargo (Whitlock 
2011), a number of issues raised in this article (e.g., what 
should be archived, enforcement, and dark data) will remain. 
Obviously, the main obstacle is a lack of policy and guide-
lines at government levels, but widespread institutional 
leadership on data management can serve as the path of least 
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resistance and the next-best option until public policy is put 
in place. Research institutions, where funding is allocated, 
managed, and data generated, can establish the necessary 
framework that includes policies, guidelines, training, and 
support for data management and archiving. Research insti-
tutions already have specific policies and guidelines on how 
research should be operated, and proper data management 
could become an accepted norm, like animal use, ethical 
protocols, and safety codes, which are widespread institu-
tional responsibilities. As we previously advocated, research 
institutions should play a central role in promoting a culture 
that supports data management and data archiving (Nature 
2009, Royal 2012), and the demonstration that properly 
managed and archived data have the potential of further-
ing research is a compelling argument to ensure continuous 
institutional library funding.

Institutional training in data management. Researchers and their 
institutions will directly benefit from students leaving prop-
erly structured and archived data once they graduate. 
Institutional practices that allow students to understand 
their roles in research as well as the benefits of proper data 
management and archiving are key to data conservation. 
Students generate most of the data within research institu-
tions, and although training in data management is still in 
its infancy, this will certainly prove as an additional valu-
able market skill given the current technology-oriented era. 
Institutions already provide training in different key aspects 
of research (e.g., protocols on safety and security, ethics, 
animal use in research, and the proper management of 
funds; NRC 2010). Training on data management practices 
can be implemented via different strategies that best adapt 
to institutional needs: (a) intensive training sessions and 
workshops, such as the ones given on animal use in research 
to both principal investigators and students—these courses 
could also include ethical components relevant to making 
data public and deal with the different views regarding shar-
ing; (b) dedicated undergraduate (upper-level) and gradu-
ate courses, which can be particularly useful to students 
working in fields that heavily depend on data integration 
from public sources (e.g., macroecology, climate change, 
and genomics); and (c) inclusion in regular course material, 
particularly those classes dealing with data analyses (e.g., 
biostatistics and biometrics). A largely unappreciated incen-
tive toward data management is that well-organized data 
will often facilitate data analyses. The challenge here, how-
ever, is to provide training in data management, archiving, 
and searching (discoverability) that is discipline specific. 
However, institutions today provide animal-use training 
by finding internal or external expertise across different 
taxonomic groups, and similar training strategies could be 
established to cover differences in data management strate-
gies that vary among subdisciplines.

A model in which data management protocols are 
detailed in student research proposals would seem quite 
relevant to promote proper data management and long-term 

preservation. More specifically, institutions should request 
that a statement describing how and where the data have 
been archived accompany dissertations and theses. Given 
that an explicit data statement at the end of a scientific 
publication is a highly efficient way to ensure that data are 
archived (Vines et al. 2013), the same policy should be suc-
cessful here. Leaving the task to preserve data solely to jour-
nals is simply not enough for the many reasons previously 
stated, if only because in many cases, students will leave 
academia before publishing their results, in which case, data 
will rapidly disappear (Vines et al. 2014).

The roles of libraries in data management and archiving. Library 
science refers to the process of organizing, preserving, 
and disseminating information. Institutional libraries are 
well poised to support researchers on data management 
practices, particularly because data are a chief form of 
information. The Libraries and Archives Canada, a federal 
funded institution, states that information management 
services are “activities undertaken to achieve efficient and 
effective information management to support program and 
service delivery; foster informed decision making; facilitate 
accountability, transparency, and collaboration; and preserve 
and ensure access to information and records for the benefit 
of present and future generations.” Most researchers (and 
librarians) would think that this represents a proper descrip-
tion of the roles that libraries can play in their institutions 
regarding data management and archiving. Training a new 
generation of librarians to fulfill the role of data managers as 
well as in assisting researchers and students in this endeavor 
would certainly fulfill their professional aspirations. Given 
the current reduction in library services due to the general-
ized displacement of documents and information to digital 
formats, librarians would certainly welcome this revitalized 
purpose. Finally, most libraries already have the long-term 
vision and infrastructure needed to manage, archive, and 
generate the protocols for sharing data produced as primary 
outputs of scientific research (Heidorn 2011).

A movement toward expanding or repurposing institu-
tional libraries so that they serve as institutional vehicles 
for data management has begun. For example, in 2015, 
the Canadian Association of Research Libraries launched 
the Portage Network, dedicated to sharing stewardship 
of research data and coordinating expertise, services, and 
technology in research data management (https://porta-
genetwork.ca). The network offers online training resources 
and assists participants in developing educational materials 
for their own institutions, and this could meet the challen-
ges of training personnel who have different data manage-
ment needs, particularly across subdisciplines of biology. 
Research institutions have also increased the capabilities 
of libraries to serve their communities in data manage-
ment. For example, the Data Repository for the University 
of Minnesota (DRUM; www.lib.umn.edu/datamanagement/
drum) centralizes data management, archiving, and dis-
semination. Moreover, institutional libraries are well placed 
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to assist in archiving data that are not digitalized yet (Smith 
and Rowley 2012).

There are at least three main reasons why libraries need 
to anchor their efforts with previously established disci-
pline-specific data management, archiving standards, and 
even existing storage infrastructure. First, it will facilitate 
establishing the infrastructure (training and resources) 
and integrating the protocols with existing data archiving 
systems. Second, the use of existing standards will reduce 
training and archiving costs, particularly because data stor-
age is free across multiple data archiving systems. Third, 
using existing standards and archiving systems allows mak-
ing data more easily discoverable. Finally, librarians can 
play multiple central roles in data management: (a) guide 
researchers in choosing appropriate existing public data 
depositories fitting their views and needs; (b) assist research-
ers in making their data compliant with existing standards 
and archiving systems to improve integration and discover-
ability; (c) assist researchers in searching for data publically 
available; (d) receive continuous training in best manage-
ment and archiving practices and available resources—as 
such, librarians will bring to their institutions the most 
current approaches regarding this rapidly evolving field; 
and (e) guide researchers in their strategies for making their 
data public. For instance, many repositories allow placing 
embargos on archived data if data generators see preventing 
sharing as strategic. However, time limits on embargos can 
be placed, and librarians can manage these even when data 
are archived in external systems (outside of the institution) 
so that data eventually become public, assuring long-term 
archiving and reuse.

In summary, institutions may not necessarily need to 
invest heavily in infrastructure given the initiatives already 
available in many subdisciplines of biology, and as Marx 

(2013) pointed out, cloud storage in public systems is likely 
the best solution for archiving and sharing.

Conclusions
In this article, our goals were to provide a summary of the 
issues underlying data management, archiving, and sharing 
(see also box 1 on our 10 take home messages). Admittedly, 
we did not cover all aspects and issues pertaining specifically 
to data generated outside of the academic sector (e.g., gov-
ernmental research and research performed by the private 
sector) or involving sensitive human data. Although many 
of the challenges will be similar, certain legal and regula-
tory aspects may be specific to researchers working in these 
sectors.

The discussion about data management, sharing, and 
open science has progressed immensely in the last decade. 
Today, most scientists have a minimum level of awareness 
of the issues presented here, and the publicly available infra-
structure necessary for proper data management is rapidly 
maturing. Specific subdisciplines of biological sciences have 
provided valuable initiatives and resources to promote col-
laborative science and which the larger community should 
embrace. With the experience gained as members of a large 
biodiversity science center (www.qcbs.ca), we believe that 
currently, the most critical task at hand is to insure that 
data remain available for future generations and stakehold-
ers. These stakeholders include all groups that contribute 
to the infrastructure supporting the research activities, in 
addition to the scientific research community and taxpay-
ers. Although we strongly support data sharing, we rec-
ognize that opinions diverge regarding how it should be 
implemented and optimized. If anything, we hope that the 
most important message remains undiluted: Managing and 
archiving data are vital components of research and should 

Box 1. Ten take home messages.

1.  The discussion on sharing data is stalling progress on finding solutions to ensure their long-term preservation through manage-
ment and archiving.

2.  Metadata (or data dictionaries) are essential to ensure the long-term safekeeping, reproducibility, interoperability, and reusability 
of data.

3. Reviewing data should become part of the scientific peer-review process.

4. Data management plans should become a standard practice of scientific projects.

5.  Data archiving and sharing have increased steadily since 2010, and many discipline-specific options now exist to archive and share 
data publicly.

6. Better recognition of data generators (e.g., data citation or coauthorship) is required.

7. Data set integration through sharing leads to reuse and new scientific discoveries.

8. Better training for students and researchers on how to manage data is required.

9. Research institutes granting degrees should enforce explicit data management, archiving, and sharing policies.

10.  Libraries should play a central role that includes training in promoting a culture that supports data management and data 
archiving.
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become institutional mandates. The alarming rates at which 
data are lost need to be reduced, and unlike many contem-
porary research problems, it appears that we have the means 
to effectively provide solutions to the issue.
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